回首页 | 网站口碑 | 服务申请表
客户评价
  • 英文论文数据统计,碰到很大的困难。在谷歌搜索看到旺登统计公司博士老师提供英文论文数据分析,把数据和要求发给博士,在博士老师的努力和辅导下,顺利跑出结果。对旺登统计公司博士老师的辅导和代跑,表示感谢。
    刘小姐
    来自: 新竹
  • 护理论文跑gee统计描述和统计推断,对我而言,是个难题,束手无策。在雅虎奇摩搜索看到旺登统计公司博士老师提供gee统计代跑及辅导,把资料、问卷表及要求发给博士老师,在博士老师的辅导下,顺利跑出结果,结果吻合期望。非常感谢旺登统计公司博士老师的严谨、认真的辅导,解决我一个难题。
    邵小姐
    来自: 高雄
  • 碰到论文stata跑统计,对我来讲,有点难。正束手无策。在雅虎奇摩上看到旺登统计公司博士老师提供stata论文统计代跑及辅导。把问卷表、数据发给博士老师,在博士老师的辅导下,顺利跑出结果。对旺登统计公司博士老师专业、严谨、认真的辅导表示感谢。
    邱小姐
    来自: 台中
  • 企业管理论文问卷统计碰到很大的困难,面对这些点,包括信度分析、独立样本T检定、单因子变异数分析、皮尔森相关分析、回归分析,简直蒙了,不知道怎么处理。在雅虎奇摩上看到旺登统计公司博士老师提供论文统计代跑及辅导,把资料、问卷表等资料发给博士老师,在博士老师的辅导下,顺利跑出结果。对旺登统计公司博士老师认真、严谨的服务能力表示赞赏,收费也比较公道。
    李先生
    来自: 台北
  • 之前委托一个香港本地的统计公司,没能把医学统计做好;焦急中,看到旺登统计公司博士老师提供统计代跑及辅导,把资料和要求发给博士老师,在博士老师的努力下,顺利做出分析结果。感觉还是台湾的统计公司比较专业,收费也公道。
    ML先生
    来自: 香港
  • 已经完成爬虫抓取PTT资料,但如何正确使用k-means找出最佳分群数后利用LDA主题模型分群,却成为难点。在朋友推荐下,选择旺登统计公司博士老师协助和辅导,跑出正确的结果,对旺登统计公司博士老师的服务质量和服务水平表示认可与感谢。
    王先生
    来自: 新北
  • 英文论文数据统计,碰到很大的困难。在谷歌搜索看到旺登统计公司博士老师提供英文论文数据分析,把数据和要求发给博士,在博士老师的努力和辅导下,顺利跑出结果。对旺登统计公司博士老师的辅导和代跑,表示感谢。辅导还免费,台北最人性化的统计代跑公司。
    刘小姐
    来自: 台北
  • 有一个贸易模型的matlab数据处理,有点难。在雅虎上看到旺登统计公司提供matlab数据处理和跑统计辅导。把数据和要求发给博士老师。博士老师跑统计过程中,对模型存在的问题进行修改,得出了比较可靠的结果。对旺登统计公司的博士老师严谨、认真的态度和能力表示赞赏。
    罗博士
    来自: 台北
  • 碰到论文跑统计,对统计不是很懂。在百度上看到旺登统计公司提供统计代跑及辅导,把问卷表、数据及要求发给博士,在博士老师的辅导下,顺利跑出结果。非常感谢旺登统计公司的 博士老师的认真、严谨,解决我一大障碍。
    陆小姐
    来自: 北京
  • 护理论文跑统计,把我难住了。实在没办法,在雅虎奇摩搜索,看到旺登统计公司博士老师辅导统计分析,把问卷表、资料及分析要求发给博士老师。在博士老师的认真辅导下,顺利完成。谢博士老师的辅导,协助我顺利完成论文的统计分析,让心中的大石头终于可以放下。再次感谢博士老师。
    连小姐
    来自: 宜兰
  • 论文问卷统计分析,在卡方检定及回归分析这2个问题碰到很大的困难。在谷歌上看到旺登统计公司博士老师提供统计代跑及辅导,把问卷表、资料及要求发给博士老师,在博士老师的协助下,顺利跑出结果。对博士老师认真、严谨的做法表示认可和感谢,解决我一个难点。
    陈先生
    来自: 台中
  • 企业管理论文问卷统计碰到很大的困难,面对这些点,包括信度分析、独立样本T检定、单因子变异数分析、皮尔森相关分析、回归分析,简直蒙了,不知道怎么处理。在雅虎奇摩上看到旺登统计公司博士老师提供论文统计代跑及辅导,把数据、问卷表等数据发给博士老师,在博士老师的辅导下,顺利跑出结果。对旺登统计公司博士老师认真、严谨的服务能力表示赞赏,收费也比较公道。
    李先生
    来自: 台北
  • 碰到医学论文统计难点,要求跑描述性统计、t 检定、单因子变异数分析(ANOVA)、卡方检定、皮尔森积差相(Pearson correlation)检定、罗吉斯回归分析(Logistic regression),真是一头雾水。在雅虎奇摩上看到旺登统计公司博士老师提供统计代跑和辅导,把量表和资料及要求发给博士老师,在博士老师的辅导下,顺利跑出结果。博士老师实在厉害,技术专业,作风严谨,态度认真。
    廖先生
    来自: 台中
  • 碰到expert choice AHP问卷资料分析难点,在雅虎奇摩看到旺登统计公司博士老师提供expert choice AHP问卷资料统计代跑和辅导,把20份问卷样本发给博士老师,在博士老师的认真辅导下,顺利跑出结果。对博士老师认真、严谨、专业的分析表示赞赏。
    徐先生
    来自: 新竹
  • 30份AHP问卷跑统计,真是头疼,不懂怎么下手。在雅虎上看到旺登统计公司提供AHP数据跑统计及辅导,把AHP问卷表和数据发给博士老师,在博士老师的辅导下,顺利跑出结果,对旺登统计公司博士老师认真、严谨的数据分析能力表示赞赏,解决我一大难题。
    赖先生
    来自: 逢甲大学
  • 碰到医学跑统计,变量之多,让人头疼。在雅虎看到旺登统计公司博士老师提供医学数据分析辅导。把数据和要求发给博士,在博士团的努力下,经过不断调整,才跑出结果。非常感谢旺登统计公司的博士团老师,解决我一个难点。
    李小姐
    来自: 醫學院
  • 碰到一阶及二阶验证性因素分析,有点头疼。在雅虎奇摩上看到旺登统计公司博士老师提供一阶及二阶验证性因素分析统计辅导,把数据和要求发给博士。在博士老师的认真协助下,顺利跑出结果。感谢旺登统计公司专业的技术服务。
    韩老师
    来自: 台中
  • 二阶因子理论模型和一阶因子理论模型数据分析,有点难。在雅虎上看到旺登数据公司博士老师提供验证性因子分析。把数据和要求发给博士老师,在博士老师的努力下,顺利跑出结果。对旺登数据公司博士老师优秀的数据分析能力表示赞赏。
    韩老师
    来自: 台中
  • 碰到cma软体做meta analysis,束手无策。在雅虎上看到旺登统计公司博士老师提供meta分析及辅导服务,把检索的文献发给博士,在博士老师的辅导下,顺利做出分析结果,感谢旺登统计公司博士老师的专业和辅导,解决我一大难题。
    李小姐
    来自: 台北
  • 使用amos软件跑论文的验证性因素分析以及路径分析,碰到很大的困难。在雅虎奇摩上看到旺登统计公司博士老师提供统计代跑辅导。把数据和问卷表发给博士老师,在博士老师的辅导下顺利跑出结果,解决我一个课业难点。真是感谢旺登统计公司博士老师的认真专业统计代跑辅导。
    林先生
    来自: 台北
2024-04-04 17:26:14 | 点击: | 浅议统计推断分析模型所需的样本容量问题

在我前一篇博文中我说过,统计推断分析的前提就是样本数据必须是代表了总体的统计特征的所谓‘代表性样本’。在此条件下,样本容量越大估计误差就越小。因此,纯粹从统计分析的角度,不论是用什么具体的统计模型分析样本数据,研究人员应该采用尽可能大的样本作数据分析。但是,在实际研究工作中,几乎不存在真正的‘代表性样本’可供统计推断分析。不仅如此,从科学研究的角度,样本数据的大小还受其它一些方面的因素限制,比如,获取数据的成本因素,数据质量的因素等等。因此,现实生活中,用于统计推断分析的数据几乎都不是按数理统计教科书所要求的随机抽样所得到的代表性样本,而是在具体的科研条件下所能获得的‘方便样本数据’。而最根本的麻烦还在于,当研究人员试图在统计假设检验(NHST=Null Hypothesis Significance Test)的框架内把统计推断分析作为科学推断分析的替代手段时,对样本容量大小的确定一下子成为了一项关乎科研成果能否得到‘科学高效地’被确认的重大而关键的任务。于是乎,就有了‘统计功效分析’(Statistical Power Analysis)这个东西,用于‘科学高效地’确定统计推断分析所需要的‘最佳’样本容量(sample size)。统计推断分析被不恰当地当作了可以用于确认科研成果的真伪的‘科学手段’(请参阅及对此复杂问题的更详细的论述,在此不再赘述)。与此相联系的就是,对样本容量大小的确定的重要性也被不恰当地夸大了。
那么,在实际的科研工作中做数据统计推断分析时,究竟应该如何恰当的决定样本容量的大小呢?我的观点及做法如下供您参考。
首先要明确的是,样本容量大小的确定虽然是做统计推断分析时必须考虑的一个因素,但其重要性与敏感性都并非在流行的统计假设检验的框架下所强调的那么关键。因为,太多的其它因素(比如数据质量,模型的构建,假设条件,等等)所带来的影响都可能大大超过样本容量的大小对分析结果的影响。统计推断分析最多所能作的不过是what-if analysis, 不是什么能确定相关的科研成果是否真实可靠的检验工具。因此,样本容量大小的确定最根本的是要符合统计分析的基本原则。因此,在给出具体的确定样本容量的建议前,我一定会提醒/强调请首先要尽可能地明确自己的研究总体及科研问题,以此来达到了解如何能保证收集数据时尽可能地有代表性并认识到可能的偏误的原因(我遇到过太多的来向我咨询的人一上来就问我‘什么是我的最佳样本容量大小’而完全不首先考虑自己的科研问题的定义及相关样本的代表性-这样的思维完全是在误解并误用/滥用统计数据分析)。在此基础上,针对具体的情况我会给出不同的答案。比如,我会对一个搞一个小的科研项目,以拿荣誉本科学位或硕士学位的研究生说,在你的时间及资金的许可的范围内,尽量多获得数据;对一个博士生或教职工科研人员,我会告诉他/她,请好好想一想你的统计模型是什么,有多少参数,按每个参数至少5个独立数据点来设计实验或抽样调查方案并收集数据。当每个参数的独立数据点超过20个时,你的更多数据所能给你带来的新的信息的量会递减(边际效益递减)显著,可以考虑不必采用太大的样本。当然,如果无法确定自己最终会采用什么统计模型,那就按尽量多获得数据的原则处理。
最后,只要有机会/对方原意听,我会把统计学家耶茨Frank Yates70年多前说的话再提醒/强调一下。1951年在为纪念费雪教授里程碑式的著作“研究工作者的统计方法”发表25周年的文章中,耶茨是这样评价统计假设检验的作用的:“对显著性检验的强调,以及把每一个实验的结果分别考虑,这样的做法已经带来了不良的后果,它使得科研人员常常把对来自一个实验的数据进行显著性检验作为最终的目的。看看结果是显著的还是不显著的,这就完事了。因此,科研工作者们一定要让自己认识到这样一个事实,那就是在许多的研究领域,某次实验是真正关键的一次实验的情形是很少有的,而更常见的是需要对同一个科研问题进行多次的实验并将这些实验结果汇总起来以获得一个满意的科学真像的综合结果。在农业大田试验的研究上情况尤其是如此,一般来说实验处理的效应会随土壤及气象条件的变化而变化。其后果就是,要想使研究结论具有普遍适用性,在不同的地区、不同的年份重复同一个科学实验变得绝对必要。在这种情形下,一系列的中等准确度的实验要远远比只有一个但准确度非常高的实验更有价值。”(英文原文登载在 page 33 of “The Influence of Statistical Methods for Research Workers on the Development of the Science of Statistics” by Yates published in Journal of the American Statistical Association, Mar., 1951, Vol. 46, No. 253.)
 

  发表留言
电子邮箱: *
联系电话: *
验证码:
  最新留言
[ LIST | TOP ]