回首页 | 网站口碑 | 服务申请表
客户评价
  • 英文论文数据统计,碰到很大的困难。在谷歌搜索看到旺登统计公司博士老师提供英文论文数据分析,把数据和要求发给博士,在博士老师的努力和辅导下,顺利跑出结果。对旺登统计公司博士老师的辅导和代跑,表示感谢。
    刘小姐
    来自: 新竹
  • 护理论文跑gee统计描述和统计推断,对我而言,是个难题,束手无策。在雅虎奇摩搜索看到旺登统计公司博士老师提供gee统计代跑及辅导,把资料、问卷表及要求发给博士老师,在博士老师的辅导下,顺利跑出结果,结果吻合期望。非常感谢旺登统计公司博士老师的严谨、认真的辅导,解决我一个难题。
    邵小姐
    来自: 高雄
  • 碰到论文stata跑统计,对我来讲,有点难。正束手无策。在雅虎奇摩上看到旺登统计公司博士老师提供stata论文统计代跑及辅导。把问卷表、数据发给博士老师,在博士老师的辅导下,顺利跑出结果。对旺登统计公司博士老师专业、严谨、认真的辅导表示感谢。
    邱小姐
    来自: 台中
  • 企业管理论文问卷统计碰到很大的困难,面对这些点,包括信度分析、独立样本T检定、单因子变异数分析、皮尔森相关分析、回归分析,简直蒙了,不知道怎么处理。在雅虎奇摩上看到旺登统计公司博士老师提供论文统计代跑及辅导,把资料、问卷表等资料发给博士老师,在博士老师的辅导下,顺利跑出结果。对旺登统计公司博士老师认真、严谨的服务能力表示赞赏,收费也比较公道。
    李先生
    来自: 台北
  • 之前委托一个香港本地的统计公司,没能把医学统计做好;焦急中,看到旺登统计公司博士老师提供统计代跑及辅导,把资料和要求发给博士老师,在博士老师的努力下,顺利做出分析结果。感觉还是台湾的统计公司比较专业,收费也公道。
    ML先生
    来自: 香港
  • 已经完成爬虫抓取PTT资料,但如何正确使用k-means找出最佳分群数后利用LDA主题模型分群,却成为难点。在朋友推荐下,选择旺登统计公司博士老师协助和辅导,跑出正确的结果,对旺登统计公司博士老师的服务质量和服务水平表示认可与感谢。
    王先生
    来自: 新北
  • 英文论文数据统计,碰到很大的困难。在谷歌搜索看到旺登统计公司博士老师提供英文论文数据分析,把数据和要求发给博士,在博士老师的努力和辅导下,顺利跑出结果。对旺登统计公司博士老师的辅导和代跑,表示感谢。辅导还免费,台北最人性化的统计代跑公司。
    刘小姐
    来自: 台北
  • 有一个贸易模型的matlab数据处理,有点难。在雅虎上看到旺登统计公司提供matlab数据处理和跑统计辅导。把数据和要求发给博士老师。博士老师跑统计过程中,对模型存在的问题进行修改,得出了比较可靠的结果。对旺登统计公司的博士老师严谨、认真的态度和能力表示赞赏。
    罗博士
    来自: 台北
  • 碰到论文跑统计,对统计不是很懂。在百度上看到旺登统计公司提供统计代跑及辅导,把问卷表、数据及要求发给博士,在博士老师的辅导下,顺利跑出结果。非常感谢旺登统计公司的 博士老师的认真、严谨,解决我一大障碍。
    陆小姐
    来自: 北京
  • 护理论文跑统计,把我难住了。实在没办法,在雅虎奇摩搜索,看到旺登统计公司博士老师辅导统计分析,把问卷表、资料及分析要求发给博士老师。在博士老师的认真辅导下,顺利完成。谢博士老师的辅导,协助我顺利完成论文的统计分析,让心中的大石头终于可以放下。再次感谢博士老师。
    连小姐
    来自: 宜兰
  • 论文问卷统计分析,在卡方检定及回归分析这2个问题碰到很大的困难。在谷歌上看到旺登统计公司博士老师提供统计代跑及辅导,把问卷表、资料及要求发给博士老师,在博士老师的协助下,顺利跑出结果。对博士老师认真、严谨的做法表示认可和感谢,解决我一个难点。
    陈先生
    来自: 台中
  • 企业管理论文问卷统计碰到很大的困难,面对这些点,包括信度分析、独立样本T检定、单因子变异数分析、皮尔森相关分析、回归分析,简直蒙了,不知道怎么处理。在雅虎奇摩上看到旺登统计公司博士老师提供论文统计代跑及辅导,把数据、问卷表等数据发给博士老师,在博士老师的辅导下,顺利跑出结果。对旺登统计公司博士老师认真、严谨的服务能力表示赞赏,收费也比较公道。
    李先生
    来自: 台北
  • 碰到医学论文统计难点,要求跑描述性统计、t 检定、单因子变异数分析(ANOVA)、卡方检定、皮尔森积差相(Pearson correlation)检定、罗吉斯回归分析(Logistic regression),真是一头雾水。在雅虎奇摩上看到旺登统计公司博士老师提供统计代跑和辅导,把量表和资料及要求发给博士老师,在博士老师的辅导下,顺利跑出结果。博士老师实在厉害,技术专业,作风严谨,态度认真。
    廖先生
    来自: 台中
  • 碰到expert choice AHP问卷资料分析难点,在雅虎奇摩看到旺登统计公司博士老师提供expert choice AHP问卷资料统计代跑和辅导,把20份问卷样本发给博士老师,在博士老师的认真辅导下,顺利跑出结果。对博士老师认真、严谨、专业的分析表示赞赏。
    徐先生
    来自: 新竹
  • 30份AHP问卷跑统计,真是头疼,不懂怎么下手。在雅虎上看到旺登统计公司提供AHP数据跑统计及辅导,把AHP问卷表和数据发给博士老师,在博士老师的辅导下,顺利跑出结果,对旺登统计公司博士老师认真、严谨的数据分析能力表示赞赏,解决我一大难题。
    赖先生
    来自: 逢甲大学
  • 碰到医学跑统计,变量之多,让人头疼。在雅虎看到旺登统计公司博士老师提供医学数据分析辅导。把数据和要求发给博士,在博士团的努力下,经过不断调整,才跑出结果。非常感谢旺登统计公司的博士团老师,解决我一个难点。
    李小姐
    来自: 醫學院
  • 碰到一阶及二阶验证性因素分析,有点头疼。在雅虎奇摩上看到旺登统计公司博士老师提供一阶及二阶验证性因素分析统计辅导,把数据和要求发给博士。在博士老师的认真协助下,顺利跑出结果。感谢旺登统计公司专业的技术服务。
    韩老师
    来自: 台中
  • 二阶因子理论模型和一阶因子理论模型数据分析,有点难。在雅虎上看到旺登数据公司博士老师提供验证性因子分析。把数据和要求发给博士老师,在博士老师的努力下,顺利跑出结果。对旺登数据公司博士老师优秀的数据分析能力表示赞赏。
    韩老师
    来自: 台中
  • 碰到cma软体做meta analysis,束手无策。在雅虎上看到旺登统计公司博士老师提供meta分析及辅导服务,把检索的文献发给博士,在博士老师的辅导下,顺利做出分析结果,感谢旺登统计公司博士老师的专业和辅导,解决我一大难题。
    李小姐
    来自: 台北
  • 使用amos软件跑论文的验证性因素分析以及路径分析,碰到很大的困难。在雅虎奇摩上看到旺登统计公司博士老师提供统计代跑辅导。把数据和问卷表发给博士老师,在博士老师的辅导下顺利跑出结果,解决我一个课业难点。真是感谢旺登统计公司博士老师的认真专业统计代跑辅导。
    林先生
    来自: 台北
2023-02-18 15:11:13 | 点击: | ChatGPT技术从数据驱动到知识驱动

去年年底的ChatGPT,让OpenAI又火了一把。微软计划投资OpenAI 100亿美元,未来计划将ChatGPT融入其搜索引擎Bing,甚至是 Word、PPT、Excel 等提升其日常软件的智能,还计划接入其云服务Azure OpenAI 。这似乎让Google也感到了一丝冬天的寒意,在1月20日,Google宣布全球裁人1.2万,计划消减部分工程类项目,而加大对AI的押注,也许未来会出现类似ChatGPT的对等软件,比如Sparrow?
ChatGPT使用了结合强化学习的RLHF(Reinforcement Learning from Human Feedback)人机反馈强化机制、Transformer及注意力机制,其本质上还是深度学习(Deep Learning)对海量数据处理的红利。但其中的一个亮点是与RLHF的结合,通过强化学习,融合了人类的反馈,如果能够实现闭环的实时学习,显然可以盘活单纯依赖机器海量存储数据学习的不足。也就是弥补单纯机器(Machine Learning)机械学习的碎片化、非逻辑性、片面性、非关联的错误性等问题。
ChatGPT成功的启示:
1. 深度学习(Deep Learning)的红利,远远未挖尽。
深度神经网络(Deep Neural Network)可以看作是AI研究者的渔具(网),而想获得海量数据挖掘知识(鱼)的应用,只要像筑梦师那样,拿着DL的砖块(block),去创造性地设计与构建DL的大厦(Architecture),就会产生对海量数据新的应用(织网牧鱼)。因此,未来肯定会继续出现新的令人惊艳的类似ChatGPT新软件及新应用。
2. 如何让AI拥有类似人的智能(比如逻辑和推理模式)?也就是如何实现从数据驱动到知识驱动?人机融合的反馈机制是否是一条出路?
大家都知道,深度学习的局限,本质上还是属于数据的驱动。也就是机器自己的学习,仍然在数据层面上的操作与造道场,而缺乏更高层次的bootstrap(你设计了一个学习框架,让机器自己去学习,显然,机器的学习是受限于你设计的学习框架)。尽管目前ChatGPT仍然是数据驱动,虽然其依赖的网上数据,其实主要是人类产生的。但更为重要的,这个框架,由于强化学习(Reinforcement Learning)的加入,RLHF(Reinforcement Learning from Human Feedback)使得这个框架系统是开放的,由于人的实时参与系统互动,从理论上讲,人类使用地越多、越久,通过人类的参与对该系统的互动融合(共融共生),也许未来在自然存在海量数据的基础上,会有更多人类的思维、逻辑、推理模式、观点等实时地融入这个系统,从而让它更符合使用者(人)的期望预期。
那是不是,这样的AI系统已经实质性的开始从单纯的数据驱动,向追求的知识驱动,在进行前进和变化呢?
PS:以上观点,抛砖引玉,欢迎批评与讨论。
 

  发表留言
电子邮箱: *
联系电话: *
验证码:
  最新留言
[ LIST | TOP ]